# The Proposed DESDynl Array-Fed Reflector Feed

N. F. Chamberlain\*, R. E. Hodges, J. D. Vacchione, M. S. Zawadzki

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

\*neil.f.chamberlain@jpl.nasa.gov



### **Outline**

- Overview
  - Proposed Mission
  - Proposed Instrument
  - SweepSAR Concept
- Proposed Array-fed Reflector Design
  - Reflector and Feed Configuration
  - Feed Antenna Tile
- Predicted Performance
  - Modeling
  - Patterns and Gain
- Conclusions



# **Proposed DSAR Mission Overview**

DSAR: DESDynISAR

Deformation

Ecosystem

Structure

Dynamics of Ice

Synthetic Aperture Radar





#### **Proposed Mission Objectives:**

- Determine likelihood of earthquakes, volcanic eruptions, landslides
- Predict response of ice sheets to climate change & impact on sea level
- Characterize effects of changing climate & land use on species habitats & carbon budget
- Monitor migration of fluids associated with hydrocarbon production and groundwater

#### **Constraints:**

- Single Radar instrument
- NASA cost-constrained (has been driving design)

#### Status:

- Currently in pre-Phase A studies
- •TBD launch



# **Proposed Instrument Overview**

TRM



Interferometric Synthetic Aperture Radar
Deployable Mesh Antenna
Patch Array Antenna Feeds
SweepSAR asymmetric Transmit and Receive
Transmit Receive Modules (TRMs)
Front-Side Processors (FSPs)
Digital Beamforming on Receive

- L-band for decorrelation
- S-band for sensitivity & lower ion ospheric impact
- Quad-pol for biomass
- Short repeat intervals
  - 12 day equator
  - 3 day ice caps
  - 232km swath (quad-pol)
  - 12m resolution





# **Proposed Antenna System**

"The DESDynI Synthetic Aperture Array-Fed Reflector" IEEE Array 2010

#### Deployable mesh antenna

- 12m projected diameter
- Northrop AstroMesh or Harris Deployable Truss
- − High mass efficiency: 1.0 − 1.5 kg/m²
- High TRL with many successful deployments

#### Array feed

- 12x2 dual-pol L-band (1.26 GHz) patch elements
- 24x1 dual-pol S-band (3.20 GHz) patch elements
- Separate TRMs for H-pol and V-pol
- 3.1m length support structure



1x2 L-band





Artist's Concept



# **Proposed Sweep-SAR Concept**





- On transmit, all feed elements are excited simultaneously, under illuminating the reflector resulting in a broad beam in elevation
- On receive, signals at individual elements are processed sequentially as they are received, sweeping across TX footprint



### **Proposed Antenna Optics and Performance**



#### **12m Diameter Prescription**

| Parameter       | Description        | Value |
|-----------------|--------------------|-------|
| D               | Projected aperture | 12 m  |
| F               | Focal Length       | 9 m   |
| Н               | Edge offset        | -1.4m |
| $\Psi_{C}$      | Center angle       | 29°   |
| 2Ψ <sub>S</sub> | Subtended angle    | 70°   |

#### **Elevation Scanning**



#### **Nominal L-band Performance**

|             |     | Tx   | Rx      |
|-------------|-----|------|---------|
| Scan range  | deg | N/A  | -7°→+4° |
| Directivity | dBi | 34.0 | 41.5    |
| Loss        | dB  | 1.7  | 1.7     |
| HPBW az     | deg | 1.2  | 1.2     |
| HPBW el     | deg | 11.6 | 1.2     |
| Cross Pol   | dB  | -25  | -25     |
| EIRP        | dBW | 63   | N/A     |



# **Proposed L-band Feed Configuration**



- 2x2 tile of dual-probe-fed dual-polarization patch elements
  - 18cm elevation spacing (Xf), 13cm azimuth spacing (Yf)
  - Concatenated 6 times in elevation to form feed array
  - Dual probes fed in anti-phase to improve pattern symmetry and reduce cross-pol
- Tiles have integrated stripline feed circuits to split/sum signals
- 100W Transmit / Receive Modules (TRMs)
  - Separate TRMs for H-pol and V-pol eliminates polarization switch



### **Proposed Antenna Tile Construction**



- Composite 18mm thick Astroquartz honeycomb Duroid tile assembly
  - Bonded using film adhesive in a high temperature cure
- Excellent RF performance and low coefficient of thermal expansion (CTE)
  - Proven performance and durability, as demonstrated on UAVSAR
- Stripline circuit board is fabricated using a fusion bond
  - Circuit traces are fenced with vias to ensure good isolation
- Probe interconnects couple capacitively from the patch to the stripline feed



# **Modeling The Proposed Antenna**



- Generally don't model entire feed in HFSS
- Stripline feed modeled in HFSS but generally not included in pattern synthesis
- Do not model loss, mesh, or faceting in GRASP
  - Sometimes do not include support structure and boom



### **Proposed L-band/S-band Feed Model**





 HFSS model has radiation boundary spaced min. ¼ wavelength (shown on 3 of 5 sides of solution box)

- S-band elements offset in azimuth to reduce mutual coupling to L-band elements
  - Causes secondary pattern to squint in azimuth assuming neither feed is on focus
- Surrounding elements provide the good approximation to local BC
  - Typical pattern taken from middle elements (shown with dashed boundary)



11

# **Synthesized L-band Feed Patterns**

H-pol



V-pol









# **Synthesized S-band Feed Patterns**

H-pol



V-pol









### **Synthesized L-band TX Secondary Patterns**







### Synthesized L-band RX Co-pol Secondary Patterns





### **Synthesized S-band TX Secondary Patterns**







### **Synthesized S-band RX Co-pol Secondary Patterns**







# **Concluding Points**

- Proposed DESDynl Synthetic Aperture Radar (DSAR) Mission:
  - Monitoring climate change, predicting earthquakes and volcanoes
- Interferometric SweepSAR with Digital Beamforming
  - Asymmetric 'all on' transmit versus sequential receive
  - Obtains wide swath with low repeat interval
- Array-fed reflectors:
  - Mass and cost-efficient large-aperture scanning antennas with high TRL
  - Limited scan capability relative to phased array but sufficient for proposed mission
- Patch Array Feed:
  - Low-profile, low-mass design that can readily adapt as design evolves
  - Proven design approach from previous missions, including UAVSAR and Deep Impact
- Performance and system validation
  - HFSS/PO/PTD/MoM pattern predictions at L-band and S-band
  - L-band design is mature and radar performance is good
  - S-band design is new and has some issues that are starting to be addressed:
    - Significant mutual coupling from S-band patch elements to L-band patch elements
    - Significant degradation is gain (4dB) at near and far-ends of swath (scanning many beamwidths)



# Questions

